quotescamera408D8217-1508-42F1-8C7C-9B81D4D48B57BF2C6754-57F9-416E-81DD-671EE8AD8D71DD13BF45-FD0E-4F5E-BCB8-EE0968EEB4D2DD13BF45-FD0E-4F5E-BCB8-EE0968EEB4D292333EC4-7DF2-4B9F-A7BF-114B75EE0347chevron_thin_rightchevron-downchevron-firstchevron-lastchevron-leftchevron-nextchevron-prevchevron-right582A3CB2-04DA-4E39-837D-58C0907011FD582A3CB2-04DA-4E39-837D-58C0907011FDchevron-upA659D4DE-32ED-45A3-A6C5-A48FFE2B488D75140C12-4E5F-4759-9FD3-4300BCD98B0CB69DB86E-0DDE-4383-BD92-653067C2563303A7445C-E555-4556-9278-5815BF71C9AF16DD793C-5D61-45BF-AFAF-6DE315DB19D01A6A983E-3DA3-4A07-ACA8-60B780BA8F5Bsearch-bigD9E58768-0281-47D1-8191-45C7CE673AF893DB4080-7C8D-467D-8E27-6ECB71C8D144C6DE3A5E-B153-4D9B-9D7B-F226C80BCB9A1D118CCB-65D4-4236-8317-A87D534DDCA8001646AA-7655-4585-ADCC-738ED6F09280
2025. 02. 23. vasárnap
  -  Alfréd
Térség

Órákon át működött a lézeres neutronkeltés – Dr. Osvay Károly (SZTE) csoportjának sikeres kísérlete az ELI ALPS-ban

2023. június 27.

A Szegedi Tudományegyetemen működő Nemzeti Lézeres Transzmutációs Laboratórium kutatócsoportja Dr. Osvay Károly vezetésével igazolta, hogy kis energiájú lézerrel is lehet neutronnyalábot kelteni. Az ELI ALPS lézeres kutatóközpontban órákon át keltett neutronsugár 2023 júniusában orvosbiológiai alkalmazást is kiszolgált.

A Szegedi Tudományegyetemen működő Nemzeti Lézeres Transzmutációs Laboratórium kutatócsoportja Dr. Osvay Károly vezetésével nemzetközileg egyedülálló módon igazolta, hogy kis energiájú lézerimpulzusok is alkalmasak neutronsugárzás előállítására. A Nature Portfolio által kiadott Scientific Reportsban megjelenésre váró tanulmányban a szerzők az ELI ALPS SYLOS Experiment Alignment ultrarövid impulzusú lézerén 2022 nyarán végrehajtott kísérletsorozat eredményeit foglalták össze.

Dr. Osvay Károly elmondta, hogy 2022-ben megtalálták a technikáját annak, hogy másodpercenként 1-1 lézerimpulzust folyamatosan lőjenek egy maguk fejlesztette céltárgyrendszerre, és ebből impulzusonként 1200-1500 neutront tartalmazó nyalábot hozzanak létre. A 2023-ban befejezett új céltárgyrendszer-fejlesztés segítségével pedig idén júniusban napi 6-8 órán át tudtak másodpercenként 10 lézerimpulzussal lőni. Ezzel a neutronok lövésenkénti számát egy nagyságrenddel sikerült növelni, vagyis százszorosára emelkedett a nagy energiájú neutronok száma a nyalábban. Ez a neutronsugár már alkalmas volt arra is, hogy az ELI ALPS orvosbiológiai kutatócsoportja biológiai mintákon végezzen kísérletet vele.

Dr. Osvay Károly kutatócsoportja a neutrongenerálási kísérletek során időben nagyon rövid, és nagy csúcsintenzitású impulzusokat fókuszál egy elsődleges céltárgyra. A lézer plazmát kelt a céltárgy felületén, e plazmából a lézerimpulzus elektromágneses tere kigyorsítja az elektronokat, amelyek osztott töltésmezőt hoznak létre, és maguk után gyorsítják a céltárgyból származó deutériumionokat. Ezek az egyszeres nehéz hidrogénionok belecsapódnak a másodlagos céltárgyba, amelyben deutérium atomokkal találkoznak, és közöttük magfúzió következik be, ennek során pedig úgynevezett gyors neutronok (2,5MeV energiájú részecskék) lépnek ki.

– A legelső neutronkeltési kísérletet a livermore-i NIF-ben végezték, amely ma már fúziós lézerként üzemel. A mi 20 millijoule-nyi energiánkhoz képest százezerszer nagyobb, több kilojoule-os energiájú lézerimpulzusokat bocsátottak a céltárgyra az ionok gyorsításához. Emiatt a további kutatások is azt az utat követték, hogy nagy lézereket kell használni a neutronkeltéshez, mert azzal működik a dolog. Mi pedig gondoltunk egyet, és megnéztük, hogy egy másik paradigmával, „kis” lézerekkel megy-e, és ha igen, mennyire. Az eredményünk azt igazolja, hogy energiában tízezerszer kisebb impulzusokkal is lehet neutronokat kelteni – emelte ki Dr. Osvay Károly.

A neutronkeltési folyamat technikailag egyik legnagyobb kihívása a deutériumion gyorsításához használt elsődleges céltárgy fejlesztése volt. Ahol ugyanis az érkező lézerimpulzus plazmát keltett a céltárgynak használt 200 nanométer vastagságú fólián, ott az anyag kilyukadt, és mire a következő impulzus odaért, valahogyan fel kellett újítani. Céltárgyként tavaly egy programozható forgótárcsát használtak, amely az új lézerimpulzusra tovább léptette a fóliát. Ezzel sikerült proof of principle, vagyis alapelvi módon igazolni a kis energiájú lézerrel való folyamatos neutronkeltést. 2023 nyarán pedig egy 200 nanométer vastagságú folyadékhártyára másodpercenként 10 impulzust lőttek, és ezzel jelentősen megnövelték a neutronszámot.

A jelenleg végzett kísérletek közeli célként az orvosi, anyagtudományi és ipari alkalmazásokhoz szükséges másodpercenkénti 108 – 1010 számú neutron elérését tűzték ki. Dr. Osvay Károly kutatócsoportja az év végén 1 KHz-es ismétlési frekvenciájú (másodpercenként 1000 impulzus) lézeren fog kísérletet végezni az ELI ALPS-ban, amivel karnyújtásnyira kerülhet ahhoz, hogy alkalmazásokban lehessen használni a kis energiájú lézeren keltett neutronnyalábot.

Forrás, fotók: SZTE