quotescamera408D8217-1508-42F1-8C7C-9B81D4D48B57BF2C6754-57F9-416E-81DD-671EE8AD8D71DD13BF45-FD0E-4F5E-BCB8-EE0968EEB4D2DD13BF45-FD0E-4F5E-BCB8-EE0968EEB4D292333EC4-7DF2-4B9F-A7BF-114B75EE0347chevron_thin_rightchevron-downchevron-firstchevron-lastchevron-leftchevron-nextchevron-prevchevron-right582A3CB2-04DA-4E39-837D-58C0907011FD582A3CB2-04DA-4E39-837D-58C0907011FDchevron-upA659D4DE-32ED-45A3-A6C5-A48FFE2B488D75140C12-4E5F-4759-9FD3-4300BCD98B0CB69DB86E-0DDE-4383-BD92-653067C2563303A7445C-E555-4556-9278-5815BF71C9AF16DD793C-5D61-45BF-AFAF-6DE315DB19D01A6A983E-3DA3-4A07-ACA8-60B780BA8F5Bsearch-bigD9E58768-0281-47D1-8191-45C7CE673AF893DB4080-7C8D-467D-8E27-6ECB71C8D144C6DE3A5E-B153-4D9B-9D7B-F226C80BCB9A1D118CCB-65D4-4236-8317-A87D534DDCA8001646AA-7655-4585-ADCC-738ED6F09280
2025. 02. 23. vasárnap
  -  Alfréd
Promenad.hu archívum

Az égi karambol szemtanúi

2017. október 16.


Most az első észleléshez hasonló fontosságú dolog történt: két neutroncsillag ütközése során keletkezett gravitációs hullámokat figyeltek meg a LIGO-Virgo tudományos együttműködés kutatói. A legújabb felfedezéssel a gravitációs hullámok mellett már optikailag megfigyelhető jeleket is sikerült detektálni, ami a „többcsatornás csillagászat” megszületéséhez vezetett.

Az észlelés körülményei

Az Albert Einstein általános relativitáselméletét igazoló, két fekete lyuk összeolvadása okozta gravitációs hullámot elsőként 2015 szeptemberében, majd másodjára 2015 karácsonyának második napján észlelte az amerikai LIGO (lézer interferométeres gravitációshullám-vizsgáló obszervatórium) livingstoni és hanfordi detektora. A harmadik észlelés szintén a LIGO érdeme, ám negyedszerre már az európai Virgo detektoráé lett a dicsőség, amely augusztus 14-én detektált szintén fekete lyukak „ölelkezéséből” származó gravitációs hullámokat. (Az alábbi videóban röviden összefoglaljuk, mik is azok a gravitációs hullámok és mit takart a legelső felfedezés.)

Alig három nappal később, 2017. augusztus 17-én, magyar idő szerint 14:41-kor a LIGO-detektorok ismét gravitációshullám-jelet észleltek, szám szerint immár az ötödiket, a szignál az észlelés dátumáról a GW170817 nevet kapta. Lassan ott tartunk, hogy a téridő fodrozódásaival kapcsolatos bejelentések már heti rutinná válnak, a mostani azonban mégis különlegesnek számít, nem véletlenül.

A nagy felfedezés, hogy a most detektált jelek neutroncsillagok összeütközéséből származnak és nem fekete lyukak találkozásából.
A fekete lyukakból érkező szignálokat könnyebb észrevenni, ám kevésbé érdekesek, míg a neutroncsillagok kisebbek, a jelük is gyengébb, így csak később látjuk meg őket. Ha utóbbiak optikai távcsővel is megvizsgálhatóak, az csillagászati szempontból sokkal izgalmasabb felfedezést jelent” – mondta az Origónak dr. Frei Zsolt, a Magyar Tudományos Akadémia doktora, az ELTE tanszékvezetője, aki a LIGO-berendezés üzemeltetését és adatainak kiértékelését végző LIGO Scientific Collaboration (LSC) tagja.

Két neutroncsillag ütközése (illusztráció) Forrás: Dana Berry, SkyWorks Digital, Inc.

Mi az a neutroncsillag?
A neutroncsillagok a nagy tömegű csillagok élete végén, szupernóva-robbanás után visszamaradó objektumok. A megsemmisülő csillag magja a hatalmas gravitációs nyomás miatt összeroppan, és egy rendkívül sűrű maradványcsillag jön létre. A mag összeomlása során a protonok neutronokká alakulnak, így a neutroncsillagot egy hatalmas, kizárólag neutront tartalmazó atommagként kell elképzelni.

A felfedezést a LIGO, a Virgo-berendezés, valamint 70 földi és űrteleszkóp segítségével tették.

Frei Zsolt szerint pusztán a gravitációshullám-jel alapján csak nagy hibával lehet lokalizálni a forrást, az égnek tehát egy tekintélyes részét pásztázni kellene, ha meg akarjuk találni az optikailag is megfigyelhető csillagászati esemény kiindulópontját. Éppen ezért az ELTE kutatói egy galaxiskatalógust fejlesztettek ki, ami alaposan lerövidíti a keresési időt. Ezt úgy érik el, hogy a tudósok a katalógusban megnézik, a szignál mely galaxisok irányából érkezik, és csak azokat a csillagvárosokat kémlelik. Így elég az adott égboltrésznek mindössze egy százalékát vizsgálni. A hullámok megjelenése után nem sokkal az optikai távcsövek meglátták a felvillanást is.

Ugyan az észlelés idejében az olaszországi Virgo-detektor is üzemelt, a jelet csak a LIGO-detektorok „látták meg”, pedig a forrás közelsége miatt az európai műszereknek is érzékelniük kellett volna. Ez fontos szerepet játszott a GW170817 lokalizálásában: a forrásnak egy olyan, szűk égterületen belül kellett lennie, ami pont a Virgo-detektor egyik „vakfoltjára” esik. Ebből és a két LIGO-detektor észleléséből azt a következtetést vonták le a kutatók, hogy a GW170817 égi iránya egy körülbelül 34 négyzetfok nagyságú égterületre szűkíthető le (szemléletesebben leírva ez nagyjából háromszor akkora, mint amekkorát a kinyújtott kezünk hüvelykujja kitakar az égből).

Hogyan tovább?

A LIGO és a Virgo detektorai jelenleg „pihennek”, nem üzemelnek, mivel fejlesztik és javítják őket. A harmadik megfigyelő időszak 2018 őszén indul, felfedeznivalóból pedig nem lesz hiány.
Azt várjuk, hogy másfajta jeleket is találunk majd, például az Ősrobbanás idejéből, vagy szupernóva-robbanásból származó gravitációs hullámokat”
– mondta Frei Zsolt.
A gravitációs hullámok és a világegyetem tágulásának üteme

Az ELTE galaxiskatalógusa nemcsak a gravitációs hullám forrásának meglelésében mutatkozott hasznosnak, de általa a LIGO-Virgo Kollaboráció kutatói a gravitációshullám-észlelésből kiszámolták a világegyetem tágulásának ütemét leíró úgynevezett Hubble-állandót is. Ebben a kutatómunkában az ELTE-ről Dálya Gergely (doktorandusz) és Raffai Péter (adjunktus, témavezető) vettek részt.


Az ELTE LIGO tagcsoportja. Balról jobbra: Bécsy Bence, Raffai Péter, Frei Zsolt, Dálya Gergely és Szölgyén Ákos
Forrás: EGRG

A Hubble-állandó értéke mostanáig csak elektromágneses megfigyelésekből volt ismert, a mostani az első alkalom, hogy kutatók a megállapításához egy gravitációs hullám jelét használták.

A kozmológusok között jelenleg élénk vita folyik a Hubble-állandó valódi értékéről: a kozmikus háttérsugárzás és a szupernóva-robbanások megfigyeléséből két kissé eltérő értéket számoltak ki. A vitát egyelőre a kollaboráció kutatói sem döntötték el: a Hubble-állandó értékét egyetlen gravitációshullám-jellel csak olyan pontossággal tudták kimérni, ami mindkét ismert értékkel összhangban van.

Magyarok a gravitációs hullámok kutatásában

A LIGO Kollaborációnak az Eötvös Loránd Tudományegyetemen és a Szegedi Tudományegyetemen működik magyar tagcsoportja, az előbbi Frei Zsolt, az utóbbi Gergely Árpád László vezetésével. A Virgo Kollaborációnak a Wigner Fizikai Kutatóközpontban működik egy magyar tagcsoportja, Vasúth Mátyás vezetésével. A több mint ezer főből álló LIGO-Virgo Kollaborációnak összesen kevesebb, mint húsz magyar tagja van, közülük néhányan az USA-ban dolgoznak (Columbia University, University of Florida, Caltech).

Az ELTE LIGO tagcsoportja a Nobel-díjas Rainer Weiss-szal. Balról jobbra: Szölgyén Ákos, Bécsy Bence, Rainer Weiss, Dálya Gergely, és Raffai Péter (a képet Frei Zsolt készítette)
Forrás: EGRG